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a b s t r a c t 

Location-based clogging attacks in a Mobile Crowdsensing (MCS) system occur following 

upon the submission of fake tasks, and aim to consume the batteries and hardware re- 

sources of smart mobile devices such as sensors, memory and processors. Intelligent mod- 

eling of fake task submissions is required to enable the development of effective defense 

mechanisms against location-based clogging attacks with fake task submissions. An intel- 

ligent strategy for fake task submission would aim to maximize the impact on the par- 

ticipants of an MCS system. With this in mind, this paper introduces new algorithms ex- 

ploiting the Self-Organizing Feature Map (SOFM) to identify attack locations where fake 

sensing tasks submitted to an MCS platform are centered around. The proposed SOFM- 

based model addresses issues in the previously proposed SOFM-based attack models by 

proposing two ways of refinement. When compared to the former models, which also use 

SOFM architectures, simulation results show that up to 139.9% of impact improvement can 

be modeled under the reconfigurable SOFM architectures. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Smart mobile devices such as smartphones, wearables and tablets are equipped with various types of sensors making the 

smart mobile devices ideal sources of collecting a variety of data [1] . Mobile Crowdsensing (MCS) is a community sensing

mechanism introduced in [2] and further discussed in [3,4] . In a participatory MCS model, users proactively contribute data

to an MCS system and gain rewards by completing certain data collection tasks. This, in turn, empowers the construction of

a smart city [5–7] . For instance, tasks deployed around a busy intersection in a city require users to take photos of the in-

tersection so that the city administration can make suggestions regarding the traffic condition at different times throughout 

the day [8] . 

Research on the security and privacy of MCS has been conducting actively since MCS systems can be targets of attacks

in various aspects [9,10] . Submission of altered/fake sensed data has been well investigated under the data poisoning at- 

tacks in MCS systems [11] as adversaries can inject fake/altered data in response to sensing tasks in order to gain rewards.

However, besides the data poisoning, malicious users in an MCS system perform Denial-of-Service (DoS) attacks by con- 

tinuously injecting invalid data into the system [12] . Numerous incentive mechanisms have been proposed to mitigate the 
� This work was supported in part by Natural Sciences and Engineering Research Council of Canada (NSERC) under the DISCOVERY Program. 
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impact of attacks by malicious users [13,14] . Particular focuses of user incentives have been on truthfulness of participation

[15] , security and privacy of crowdsensed data [16] , game theoretic approaches to ensure reliability and dependability of 

crowdsensing services [17,18] . 

As stated in [19] , batteries are critical components of MCS systems whereas sensing, processing and storage resources 

of mobile devices are of the paramount importance as well. Given these, since users are allowed to create and submit

sensing tasks to an MCS platform, MCS platforms and participants are vulnerable to Denial of Service (DoS)-like attacks 

initiated by malicious users who submit fake tasks which interfere with the normal execution of other tasks in the same

MCS system [20] . Due to the unavailability of data regarding fake task submissions, it is imperative to design synthetic

traces to model the behaviour of malicious users who submit fake tasks to clog the system resources in an MCS network.

The synthetic model should be designed by considering the broadest impact of a submitted fake task on an MCS system.

Therefore, adversaries are modeled for submitting their fake tasks to have the epicenter of a task cover as many participants

as possible. To the best of our knowledge, the study in [20] considered the threats concerning DoS-like clogging attacks on

MCS systems for the first time, and introduced an empirical approach to model the adversarial behavior in the presence of

such attacks. The authors defined the following key features that characterize the behaviour of a sensing task: location, time, 

resource requirements (e.g. battery drain). Later in [21,32] , an Artificial Intelligence-based approach was proposed by training 

a Self-Organizing Feature Map (SOFM) to determine the sensing task deployment locations alongside the other key features 

to maximize the impact of a fake sensing task. These studies were followed by defence mechanisms to detect and eliminate

the sensing tasks by mainly using ensemble machine learning methods [22,23] . Recently, SOFM was used as an AI engine

to determine the best position for the early flattening of COVID-19-like pandemics in [33] . The position was utilized as a

center of the region that the mobile assessment center is assigned to test all individuals located in that region. Moreover, all

stops of a mobile assessment center considering the worst-case scenario were optimally obtained by SOFM for each region 

in the selected area. 

This paper builds on the previously introduced SOFM-based adversarial model and proposes a locally reconfigurable 

SOFM architecture for higher impact on the participant population. Each neuron of the SOFM denotes an attack center for 

the fake sensing task submissions to the MCS platform. The proposed approach pursues a refinement procedure for the 

SOFM after training with participant coordinates. The training period is followed by a posterior search over an extended re- 

gion to determine the locations of the fake tasks. Simulation results show that the proposed locally reconfigurable SOFM can 

achieve up to 139% increase in terms of the mean estimate of the number of impacted user events (defined in Section 4.3.3 ).

Compared to Zhang et al. [21] , this paper aims to solve a similar problem with several improved methods and combi-

nations of them so to overcome the bottleneck of the method proposed in [21] , (which is described in Section 2.3 ) and

significantly increase the impact of adversaries in some cases. 

While this study models an adversary, the study in [22] models a defender. An important objective of fake task generation

is to disguise the fake tasks, so that they are not easily notified and avoided. 

The rest of the paper is organized as follows. In Section 2 , background and motivation of this work is presented.

Section 3 presents in detail the two proposed approaches to improve the performance of attack center generation. In 

Section 4 , the results of different approaches with several metrics are compared. Section 5 concludes on the effect of the

proposed approaches and suggest on the direction for further improvement. 

2. Background and motivation 

This section starts with presenting the background information on Self-Organizing Feature Map and related studies in 

MCS. Following that, the motivation behind this work is discussed, where insights are provided to motivate the proposed 

approach. 

2.1. Self-Organizing Feature Map (SOFM) 

Self-Organizing Feature Map (SOFM) is the core of the proposed model in this paper, and it is an Artificial Neural Network

(ANN) introduced in [24] and further revisited in various studies [25–27] . 

From a practical perspective, SOFM has been studied in [28] , and recently in [33,34] . It is worth mentioning that problems

studied in [33,34] are particularly related to the problems discussed in this paper. The authors in [33] leverage SOFM to

optimally deploy and route the mobile agents in the case of a pandemic by making an analogy to the problem of optimal

placement of adversarial tasks in an MCS setting. 

Basically, SOFM is used for the recognition of the spatial distribution of a set of data with a network of neurons. Below

are the steps of the SOFM technique and the settings used in this paper. It is worth to note that for the sake of simplicity,

only the basic version of SOFM is presented. 

(1) Initialization of the network: the initial network can be formed in the shape of a hexagon or rectangle. 

In this paper, two features of user events are used in order to train SOFMs. These features are the longitude and

latitude. The input vector of the SOFM training is 

x = 

[
x i 

]
n ×2 

, i = 1 , . . . , n, 
2 
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Fig. 1. Two movement models that were previously proposed. Red and blue squares represent the start locations of a malicious task and a legitimate task, 

respectively, whereas the black paths with arrows represent the random walks movement pattern of tasks during the MCS campaign. The black dots are 

the last positions of a task. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

where x i = 

(
x i, longitude , x i, latitude 

)
is the geographic coordinate of the i th user event and n is the number of user

events. A p × q SOFM is initialized uniformly in the minimum bounding rectangle of the city map. The neuron vector

(or weight vector) is denoted by 

w = 

[
w i j 

]
p×q ×2 

, i = 1 , . . . , p, j = 1 , . . . , q. 

(2) Selection of the Best-Matching Unit (BMU, also called Best-Matching Cell in [25] ): a BMU is the “winner” neuron for

an input in the current SOFM, which is the closest SOFM neuron based on the Euclidean distances. 

(3) Updating of the weight vector ( w ): at each iteration of the training, the algorithm selects an input ( x k ), and finds the

corresponding BMU ( w ( k ) ). It then defines a radius and updates the neighboring neurons of w ( k ) in the current SOFM

within the range of the radius. The updating process of a neuron can be formulated as 

∀ w i ∈ N 

(
w (k ) 

)
, w 

(t+1) 
i 

= w 

(t) 
i 

+ α(t) 
i,k 

(
x 

(t) 
k 

− w 

(t) 
i 

)
, 

where N 

(
w (k ) 

)
is the set of neighboring neurons of w ( k ) and α(t) 

i,k 
is a scalar value ranging between 0 and 1. The study

in [27] suggests a feasible choice of α(t) 
i,k 

, which is 

α(t) 
i,k 

= c(t) exp 

{ 

−
dist 

2 
(
w i , w (k ) 

)
2 σ 2 (t) 

} 

, 

where dist 
(
w i , w (k ) 

)
is the Euclidean distance between w i and w ( k ) , c ( t ) and σ ( t ) are two monotonically decreasing

functions of t , and the initial value of σ ( t ) is sufficiently large. 

2.2. Determination of attack centers with SOFM 

According to Zhang et al. [21] , attack centers are first determined based on the density of user events in a city, and

malicious tasks are then generated within a defined radius of attack centers. Similar to the legitimate tasks, malicious tasks 

can move over the time. Two movement models, namely Zone-Free Movement (ZFM) and Zone-Limited Movement (ZLM), 

are introduced in [20] and [22] , respectively [21] . 

Fig. 1 illustrates the ZFM based legitimate and illegitimate tasks movements. In a deployment with ZFM, malicious tasks 

are initially generated within a defined radius and will be able to move outside the radius afterwards, while legitimate 

tasks are initially generated outside of an attack region, then they can move inside of the attack region according to a

random walk movement pattern. All movements with ZLM are constrained within the radius. As ZFM does not restrict the 

movement of tasks in either the inbound or outbound direction, it is considered to be more realistic than ZLM. Therefore

ZFM is selected for the task movements in this paper. 

To find the best attack centers, the study in [21] follows an Artificial Neural Networks-assisted approach, where SOFMs 

are trained. The best neurons will be selected as the attack centers. 
3 
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Algorithm 1 describes the procedure followed in [21] . 

Algorithm 1 Find attack centers with SOFM (Original method in [21] ). 

procedure FindAttackCenters ( Al l UserEv ents ) 

BestNeurons ← ∅ 
for all day do 

UserEv ents ← GetUserEvents (Al l UserEv ents, day ) 

SOF M ← TrainSOFM (UserEv ents ) 

� Neurons ranked by the number of user events covered 

BestNeurons ← BestNeurons ∪ { GetBestNeuron (SOF M) } 
end for 

return BestNeurons 

end procedure 

2.3. Motivation 

In [21] , all SOFMs are trained with global data in a city. While a SOFM is being trained, the position of a single neuron

is likely to be affected by the positions of other neurons. This can be told from Step (3) in Section 2.1 , where neighbouring

neurons will be updated at each iteration. It is observed that in some cases, a neuron in a trained SOFM does not reflect a

locally dense area. In other words, a denser area could have been covered if the neuron were shifted. 

The network size of SOFM is based on the number of neurons which is determined at the beginning of the training

process. Increasing the network size will lead to a decrease in the number of covered individuals per neuron. Applying 

constraints to the neuron coverage is a complicated process, which is the reason why a more detailed solution can be

obtained by the regional-based selection of the number of neurons as reported in [33] . During the proposed refinement

process, any possible improvement can be applied to each neuron through local SOFM update as depicted in Fig. 2 . 

3. Proposed solutions 

In this section, two approaches are proposed to improve the performance (defined in Section 4.1 ) of attack location

generation. These two variants of SOFM are collectively referred to as “locally reconfigurable SOFM.”

The key assumption in this paper is as follows: a user can execute no more than one task at any moment. It is further

assumed that a user event will be contracted by an illegitimate task if possible and by the task that leads to the highest

energy consumption. 

3.1. Refinement of SOFM neurons with locality 

As mentioned in Section 2.3 , the SOFM-base approach proposed in [21] might neglect the locally dense areas when

SOFMs are trained. Hence, the first improvement this paper puts forward is to refine neurons of SOFMs with the considera-

tion of locality. 

An example is shown in Fig. 4 . 

Fig. 4 (a) shows a neuron in an initially trained SOFM and user events covered within a 200 m radius. Apparently, the

coverage of the neuron could be improved. The neuron is refined by defining an outer radius (300 m in this case) and

retraining a 1 × 1 SOFM with the user events happening within the outer circle (other centroid-based clustering algorithms 

to find a denser area can also be considered), shown in Fig. 4 (b). The result of the refinement is shown in Fig. 4 (c), where

the blue point and the blue circle are the refined neuron and the new coverage, respectively. The procedure is defined in

detail in Algorithm 2 . 

Different from Algorithm 1, Algorithm 2 attempts to achieve a better performance and enlarge the coverage of user events 

by slightly moving each initially generated attack center within a certain bound. After obtaining the performance statistics 

(i.e., the number of covered user events) of the adjusted attack locations, the algorithm ranks the statistics to determine its

choice of attack locations, similar to that in Algorithm 1 . 

3.2. Distance constraint for neuron selection 

In the original approach [21] and the refined approach in Section 3.1 , the best neurons are selected one by one, without

using the knowledge of any previously selected neurons. It is possible that two selected attack centers are too close as

shown in the example scenario in Fig. 3 . 

Under the assumption explained before Section 3.1 , a user can only execute at most one task at a time. When illegitimate

tasks are deployed in the overlapping area of the coverage of two close attack locations, the potential impact of individual
4 
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Fig. 2. Reconfigurable SOFM implementation to MCS platform where i and Total _ neuron _ num indicate the neuron index and the number of neurons in the 

SOFM configuration, respectively. 

Fig. 3. Three close neurons are selected as attack centers. The coverage of illegitimate tasks may overlap when deployed within a 200 m radius of these 

centers. 

5 
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Fig. 4. Example refinement result for a SOFM neuron. 
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Algorithm 2 Find attack centers with refined SOFM. 

R ′ : Extended search region for refinement 

procedure FindRefinedAttackCenters (AllUserEvents) 

OldBestNeurons ← FindAttackCenters (AllUserEv ents ) 

N ewBestN eurons ← ∅ 
for all day do 

UserEv ents ← GetUserEvents (Al l UserEv ents, day ) 

SOF M ← TrainSOFM (UserEv ents ) 

N ewN eurons ← ∅ 
for all OldNeuron ∈ SOF M do 

Cov eredUserEv ents ← GetCoveredUserEventsInRange (OldNeuron, R ′ ) 
N ewN eurons ← N ewN eurons ∪ TrainSOFM (Cov eredUserEv ents ) � Train 1 × 1 SOFM 

end for 

� Neurons ranked by the number of user events covered 

N ewBestN eurons ← N ewBestN eurons ∪ { GetBestNeuron (N ewN eurons ) } 
end for 

return N ewBestN eurons 

end procedure 

 

 

 

tasks could be reduced. To avoid such a situation, we apply distance constraints when picking the best attack centers, which

can be formulated as shown in Eq. (1) . 

geodesic 
(
c i , c j 

)
� 400 m , ∀ c i , c j ∈ C, c i 	 = c j , (1) 

In the equation, C is the set of selected attack centers, and geodesic 
(
c i , c j 

)
is the geodesic distance 1 [29] between c i and c j .

This work benefits from a feature of SOFM which is that many candidate attack centers are available, so it is unlikely to

run out of neurons with the constraint in Eq. (1) . 

Algorithm 3 presents the selection process presuming that we have access to neurons in all SOFMs trained by 

Algorithms 1 or 2 . 

Algorithm 3 Select attack locations with distance constraints. 

D : Isolation constraint between neurons 

procedure SelectAttackLocationsWithDistanceConstraints (Candidates) 

BestNeurons ← ∅ 
Cand id ates ← Rank (Cand id ates ) � Neurons ranked by the number of user events covered 

for all c i ∈ Cand id ates do 

for all c j ∈ BestNeurons do 

if geodesic 
(
c i , c j 

)
� D then 

BestNeurons ← BestNeurons ∪ { c i } 
break � Found one satisfying the constraint. Continue with the next candidate 

end if 

end for 

end for 

return BestNeurons 

end procedure 

4. Performance evaluation 

As previous research in [21] showed that effective to utilization of SOFMs could determine attack centers, this paper 

uses the SOFM-based attack center determination as a benchmark solution. With this in mind, CrowdSenSim simulator 

[30,31] is utilized to generate tasks and participant mobility patterns. The pipeline of the simulation environment built on 

CrowdSenSim is illustrated in Fig. 2 . 
1 GeoPy Documentation, https://geopy.readthedocs.io/en/stable/#module-geopy.distance 
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Table 1 

Simulation settings for user events, attack center and task generation. Uniform (x,y) denotes a uni- 

form distribution of a variable in the interval ( x , y ). 

Attack region radius ( R a ) 200 m 

Number of users 10 , 0 0 0 

Duration of user events Uniform ( 60 min , 180 min ) 

Smartphone battery level (user) 80% from Uniform (20% , 100%) ; 20% from Uniform (1% , 20%) 

Sample rate of user events 1 event/min 

Daily simulation time interval 00:00 – 23:59 

Number of attack centers 6 

Number of tasks {500, 1000, 2000} 

Table 2 

Simulation settings for task event generation. 

Malicious tasks Legitimate tasks 

Day Uniform ( { 1 , 2 , . . . , 6 } ) 
Hour 80% in Uniform ( 7:00 , 11:00 ) ; 20% in 

Uniform ( 12:00 , 17:00 ) 

Uniform ( 00:00 , 23:59 ) 

Duration 70% from Uniform ( { 40 min , 50 min , 60 min } ) ; 30% 

from Uniform ( { 10 min , 20 min , 30 min } ) 
Uniform ( { 10 min , 20 min , . . . , 60 min } ) 

Smartphone battery usage 50% from Uniform (7% , 10%) ; 50% from 

Uniform (1% , 6%) 

Uniform (1% , 10%) 

Coverage 100m 

Movement radius 80m 

 

 

 

 

 

 

 

 

4.1. Performance metrics 

The following definitions help to understand the performance evaluation study in this section. 

• Impacted user events: the number of distinct user events covered by malicious tasks. A user event ( U ) is said to be

covered by a task event ( T ) if all of the following conditions are met: (1) the timestamp of U is within the time interval

of T ; (2) the location of U is within the coverage of T , which means geodesic (U, T ) � 100 m in our experiments; (3)

the battery of the user device at the moment of U is sufficient for the corresponding task of T ; and (4) U has not

been covered by other task events. 

• Impacted users: the number of distinct users covered by malicious tasks, which is obtained from the unique user IDs 

of the impacted user events. 

• Completed malicious tasks: the number of distinct malicious tasks completed by users. A task is completed if there is 

any task event that covers at least one user event. 

• Total impacted energy consumption: the total value of energy consumed by all malicious task events that cover user 

events. 

• Ratio of impacted user events: the ratio of the number of total impacted events to the number of total events. 

• Ratio of impacted energy consumption: the ratio of total impacted energy consumption to the total amount of energy 

consumption. 

4.2. Simulation setup 

This paper adopts the performance evaluation settings used in [20,21] , detailed in Table 1 for the generation of user

events, attack centers and tasks. 

Key parameters in Table 1 are explained as follows. 

• Attack region radius ( R a ): the maximum distance between the generated malicious tasks and the corresponding attack 

center. 

• Duration of user events: the amount of time a user event lasts for before another user event starts. It can be inter-

preted as a rate of sampling. 

• Smartphone battery level (user): the battery level of a user device captured at each user event. 

In addition to these, Table 2 presents the performance evaluation settings for the generation of task events. 

To maximize the impact, illegitimate tasks are mainly deployed during on-peak hours 2 , the time when users are active

the most within a day. Specifically, 80% of the illegitimate tasks are active during on-peak hours, while the remaining 20%

aim for the mid-peak hours, and no illegitimate tasks are submitted during off-peak hours since the adversaries are unlikely 

to gain much due to the overall reduced user activity. 
2 We follow the schedules for on-peak and mid-peak hours given by the Ontario Energy Board [35] , since these schedules would reflect the patterns of 

electricity consumption of users and the activeness of users in a day. 

8 
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With the limited resources, it is also impossible to keep all tasks long-lasting. Simulations in this paper assume that only

70% of the illegitimate tasks run for over 40 min, and 30% last for less than 30 min. Furthermore, the duration is assumed to

be discrete for the sake of simplicity in simulation and analysis. Last but not least, half of the illegitimate tasks are assumed

to use 7% to 10% of the smartphone battery during an attack on a device, while the other half are assumed to consume only

1% to 6%. These assumptions are adopted from previous works in [22,34] . 

Tasks, users and smartphone data are generated in the following format: task = {‘ID’, ‘latitude’, ‘longitude’, ‘day’, ‘hour’, 

‘minute’, ‘duration’, ‘remaining time’, ‘battery consumption (%)’, ‘legitimacy’, ‘on-peak hour’, ’grid number’}. user = {‘ID’, ‘lat- 

itude’, ‘longitude’, ‘day’, ‘hour’, ‘minute’, ‘moving duration’}. smart phone = {‘ID’, ‘UserID’, ‘battery level (%)’, ‘sensing radius’}. 

Among these features, the location of a user or a task is determined by latitude, longitude, and time of its presence consist-

ing of day, hour and minute. Particularly, the duration for a task is the time to accomplish the whole task and the remaining

time exhibits the time needed to finish the subsequent sub-tasks. Battery consumption denotes the battery level of smart 

phone percentage level in the format of the percentage requested by the task. The moving duration for a user indicates the

temporal length of the motion of the user. As a Wi-Fi router operating at 2.4 GHz band can reach up to 300 feet outdoors,

the sensing radius is set at 100 m. Illegitimate tasks from clogging attackers constitute 10% of total tasks. ‘Legitimacy’ is the

class label to differentiate fake tasks from legitimate tasks. Moreover, ‘on-peak hour’ which is a Boolean feature is utilized 

to indicate whether the task is initiated during 7am to 11am which is defined as busy communication time. The last fea-

ture “grid number” is added to quantify the coordinates. Rectangular partitions, which are based on the minimum latitude, 

minimum longitude, maximum latitude and maximum longitude of the city map, divide a city into small grids with approx- 

imately the length of 600 m. Labels start with one and increase towards the last partition according to the matrix structure,

ascending from east to west and from north to south. 

4.3. Results 

MCS platform is used for data aggregation which consists of user movements for six days and task generation for twenty

days in order to implement SOFM and locally reconfigurable SOFM proposed in this work. User movement data for six 

days are evaluated by SOFM to determine the attack centers with different strategies. Legitimate and illegitimate tasks are 

generated through MCS platform and fixed for evaluation of efficiency. The twenty days of user movement data, which are 

generated independently from the six-day user movement data, are utilized to demonstrate more challenging extrapolation 

performance for the test performances of SOFM and the proposed locally reconfigurable SOFM. Performance evaluation is 

implemented in two cities, specifically Dryden as a small city and Brant as a larger city, for us to consider a more generalized

case study. 

Since two approaches are proposed for improvement, there are four combinations of the approaches, which are 

• not refined and not constrained (baseline), 

• refined and not constrained, 

• not refined and constrained, 

• refined and constrained. 

Refinement is briefly explained as local update around each neuron after SOFM training phase as depicted in Fig. 4 and

also followed in Fig. 2 . The number of potential participants in a 200 m radius of the attack center are calculated for all

SOFM neurons, then an attack center satisfying the maximum number of participants is determined as an illegitimate task 

submission region for more intelligent and realistic attack scenarios. If two neurons are closer than 400 m as depicted in

Fig. 3 , they are overlapped each other and the performance of SOFM is mitigated in this case. This issue can be solved

by applying a 400 m constraint to assure that each neuron has its own coverage and each participant can be covered by

only a single SOFM neuron. After implementing these two mechanisms in SOFM, the locally reconfigurable SOFM provides 

better coverage performance to determine attack center. All improvements after applying refinement and constraint are 

summarised in Table 3 and Fig. 5 for Brant. The overall selected neurons by a reconfigurable SOFM for attack center have a

better coverage in terms of the number of potential participants than those by SOFM. 

Afterwards, we aggregate data to obtain the performance metrics that were described in Section 4.1 , and perform a t -test

to get a mean estimate and a 95% confidence interval for each performance metric. The results for Dryden and Brant are

shown in Figs 7 and 6 , respectively. 

In each group (separated by the number of tasks) of a sub-figure in Figs 7 and 6 , the bars from left to right represent the

results in the above order. Below we provide individual discussions for these results concerning the refined and constrained 

approaches, as well as the combination of these two approaches. 

4.3.1. Impact of refined SOFM 

As seen in Fig. 7 , the SOFM-based modelling of fake tasks after refinement (i.e. “Refined, Unconstrained” in the figure) 

leads to little difference for Dryden in the number of completed malicious tasks, the value of the impacted energy con-

sumption, and the fraction of impacted energy. On the other hand, in terms of the other performance metrics, remarkable 

improvements are achieved. For instance, the number of impacted users, impacted user events, and the fraction of impacted 

user events increase by around a factor of one when 20 0 0 tasks are deployed. 
9 
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Table 3 

Changes of neuron coverage after refinement in Brant. Coverage of all neurons has been improved. Neurons in bold font are selected since they lead to the 

highest coverage of user events after refinement. 

Neuron User events covered by original 

neuron (circle in Fig. 4 (a), inner 

circle in Fig. 4 (b) or orange circle in 

Fig. 4 (c)) 

User events within 300 m of 

original neuron (outer circle 

in Fig. 4 (b)) 

User events covered by 

refined neuron (black points 

within blue circle in Fig. 4 (c)) 

Increase Percentage 

of increase 

1 0 6 8 8 NaN 

2 86 212 181 95 110% 

3 659 1118 819 160 24% 

4 106 190 122 16 15% 

5 0 459 492 492 NaN 

6 3220 5235 3292 72 2% 

7 1618 3510 2199 581 36% 

8 333 575 384 51 15% 

9 381 635 418 37 10% 

10 199 410 307 108 54% 

11 953 2173 1158 205 22% 

12 311 645 508 197 63% 

Fig. 5. The number of covered users under SOFM and Reconfigurable SOFM. 

 

 

 

 

 

 

As seen in Fig. 7 , refined SOFM-based modelling (i.e. “Refined, Unconstrained” in the figure) of fake tasks in a larger

city (i.e. Brant) leads to significant improvements in most performance metrics and a slight degradation in the number of 

participants and the value of energy consumption for 500 tasks. Furthermore, the improvements become more significant 

as the number of tasks increases. For instance, we observe a 24.7%, 25.1%, and 34.1% improvements in the mean estimate

for the impacted energy consumption for 500, 1000, and 2000 tasks, respectively. 

To evaluate the impact of refinement, we also examine the number of user events covered by individual neurons at each

stage during the training phase. To this end, changes of the numbers of user events covered by individual neurons in Brant

are shown in Table 3 . 

4.3.2. Impact of constrained SOFM 

As seen in Figs 7 and 6 , the constrained SOFM (“unrefined, constrained” in the figure) can also contribute to the im- 

provement, but it is not as substantial as the refined approach, and some degradation can be noticed in some cases. Similar

to the refined approach, the most remarkable improvement can be seen when measured with the number of impacted users 

and impacted user events in Dryden. After the application of the constrained approach, the number of impacted users goes 

up by 33.5%, 61.1%, and 54.8%, for 500, 1000, and 2000 tasks, respectively. The corresponding increases for the number of

impacted user events are 45.7%, 69.3%, and 69.2%. 

4.3.3. Impact of refined and constrained reconfigurable SOFM 

When two approaches are applied consecutively, i.e., applying the refined approach during the training process and dis- 

tance constraints while selecting the attack centers, the impact is more significant than the experiments when a single 

approach is applied. This scheme is denoted by “refined, constrained” in Figs 7 and 6 . 
10 
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Fig. 6. Performance of reconfigurable SOFM in Brant: completed malicious (illegitimate) tasks, impacted users, impacted user events, impacted energy 

consumption, fraction of impacted user events, and fraction of impacted energy. 

Fig. 7. Performance of reconfigurable SOFM in Dryden: completed malicious (illegitimate) tasks, impacted users, impacted user events, impacted energy 

consumption, fraction of impacted user events, and fraction of impacted energy. 

11 
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Fig. 8. Determination of attack centers in Dryden with both unconstrained and constrained approaches. Orange points represent attack centers and blue 

circles are the corresponding attack regions ( R a ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

For example, compared to the baseline approach, the refined approach, and the constrained approach, the number of 

impacted users with a total of 20 0 0 tasks in Dryden is increased by 99.2%, 7.9%, and 28.6%, respectively. The correspond-

ing boost for the number of impacted user events are 139.9%, 11.2%, and 41.8%, respectively. These results consolidate the 

implication that the refined approach is more effective than the constrained approach, from Section 4.3.2 . 

4.3.4. t-SNE analysis on generated tasks 

Since this study models an adversary, it needs to ensure that the generated illegitimate tasks are effectively disguised, 

which means that they should be analogous to legitimate tasks. To demonstrate the similarity, t-distributed stochastic neigh- 

bor embedding (t-SNE) analysis is performed, which is a dimension reduction technique proposed in [36] to visualize the 

clusters of data. Here, the tasks generated for Brant are considered, and the closeness of tasks is measured based on a

subset of properties defined in Section 4.2 : {‘latitude’, ‘longitude’, ‘day’, ‘hour’, ‘minute’, ‘duration’, ‘remaining time’, ‘battery 

consumption (%)’, ‘on-peak hour’}. This is followed by plotting the t-SNE results on a 2-D plane as seen in Fig. 9 . 

It can be clearly seen that in each cluster, it would be challenging and complicated to distinguish legitimate tasks from

illegitimate tasks, which fulfills the requirement of the adversarial modelling in this study. 

4.3.5. Discussions 

As shown in Section 4.3.2 , only slight increases can be observed in most performance metrics when only the constrained

approach is applied. A possible reason can be told from the city map (shown in Fig. 8 (a)) where many user events gather in

one area, downtown. A small city has a relatively small downtown, which implies that some neurons in a trained SOFM in

the city will be close to each other and will be discarded during the selection, as shown in Fig. 8 (c). However, these neurons
12 
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Fig. 9. t-SNE analysis to demonstrate the challenge of distinguishing legitimate tasks from illegitimate tasks. 

 

 

 

 

 

 

 

 

 

 

 

located in downtown can cover significantly more user events than those not in the urban area. The benefits of enforcing

non-overlapping coverage can then be canceled by the difference between the neuron quality. 

5. Conclusions 

Fake task submissions to Mobile Crowdsensing (MCS) platforms introduce serious threats to the battery lifetime of the 

participant devices, as well as resource utilization of the MCS servers. The lack of data regarding malicious task submissions 

makes the development of defense mechanisms rather challenging. To this end, we have proposed new models for fake task 

submission attacks by improving the impact of attack center determination and examined them with experiments in two 

cities. The proposed attack models leverage Self-Organizing Feature Maps (SOFM) to build a locally reconfigurable SOFM 

to determine the centers and other features of fake/illegitimate tasks submitted to MCS platforms. Based on the numerical 

results, we have concluded that the proposed refined scheme for locally reconfigurable SOFM significantly outperforms the 

previously proposed SOFM-based fake task models. More specifically, when compared to the previously proposed SOFM- 

based fake task model, the proposed locally reconfigured SOFM architecture can achieve up to 139% improvements in terms 

of the impacted participants in an MCS system. 

The proposed model is currently being extended to incorporate real time user events rather than uniform distribution in 

the simulator. 
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